World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Thermally Induced Nonlinear Bending and Stability of Nanocomposite Curved Pipes Reinforced by CNTs

    https://doi.org/10.1142/S0219455425501639Cited by:0 (Source: Crossref)

    This research is concerned with the thermal bending and stability of temperature-dependent nanocomposite curved pipes strengthened with carbon nanotubes (CNTs) subjected to uniform temperature rise. Thermo-mechanical characteristics of the polymer composite pipe are assumed to vary entirely in the thickness by a non-uniform function of the radius. Five different patterns are selected to model the propagation profile of CNTs amongst the pipe thickness. Based on the shear deformation and von-Karman kinematic hypothesis, nonlinear balance equations of the polymer curved pipe are determined via varying the total potential energy of the system. Governing equations as a set of coupled nonlinear differential equations are analytically solved using a perturbation-based technique. Closed-form solutions are derived to estimate large-amplitude deflection of nanocomposite curved pipes with pinned and clamped boundaries under uniform thermal loading. The obtained results show the influences of important parameters such as material/geometrical characteristics and foundation stiffness on the thermally induced nonlinear response of polymer nanocomposite curved pipes.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures