World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Tunable Bending and Buckling Behaviors of Circular Plates Made of FG Graphene Origami-Enabled Auxetic Metamaterials

    https://doi.org/10.1142/S0219455425501688Cited by:1 (Source: Crossref)

    Based on the variational differential quadrature (VDQ) method, the bending and buckling characteristics of circular plates made of functionally graded graphene origami-enabled auxetic metamaterials (FG-GOEAMs) are numerically studied in this paper. It is considered that the plate is composed of multiple GOEAM layers with graphene origami (GOri) content that changes in layer-wise patterns. The results from genetic programming-assisted micromechanical models are also employed in order to estimate the material properties. The plate is modeled according to the first-order shear deformation plate theory whose governing equations are obtained using an energy approach in the context of VDQ technique. The governing equations are given in a new vector-matrix form which can be easily utilized in coding process of numerical methods. By means of VDQ matrix differential and integral operators, the governing equations are discretized and solved to calculate the lateral deflection and critical buckling load of plates under various boundary conditions. Selected numerical results are presented to investigate the influences of boundary conditions, GOri content, folding degree and distribution pattern on the buckling and bending behaviors of FG-GOEAM plates.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures