World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROJECTIVE VOLUME RENDERING BY EXCLUDING OCCLUDED VOXELS

    https://doi.org/10.1142/S0219467805001823Cited by:0 (Source: Crossref)

    In volume rendering, an important issue in acceleration is to reduce the calculations for occluded voxels. Although this issue has been addressed in the ray casting approach, it is difficult to apply the idea to the projection approach due to uncertain termination conditions. In this paper, we propose a new method to effectively address the exclusion problem in the projection approach, so the rendering process can be accelerated without impairing the rendered image quality. In the rendering process, this new method employs the dynamic screen technique to manage the pixels whose accumulated opacity has not reached 1.0. A ray-cast link at each pixel is set up to record the rendered voxels for the corresponding ray cast from the pixel to intersect. According to the rendered voxels covering the pixels whose accumulated opacity value is below 1.0, visible voxels are selected to render from front to back by the neighboring relationship between the rendered voxels and the voxels to be rendered. Thus, the occluded voxels are dynamically excluded from the loading and rendering processes accurately. Our proposed method can be in general applied to both parallel and perspective projections, using regular and irregular volume datasets. Our experimental results showed that the proposed method can significantly accelerate volume rendering if the data volume has a high percentage of occluded voxels. This method can also perform fairly efficiently for the expensive shading calculations if requested in volume rendering.

    Remember to check out the Check out our Most Cited Articles!

    Check out these titles on Image Analysis