Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Human Activity Recognition Algorithm in Video Sequences Based on Integration of Magnitude and Orientation Information of Optical Flow

    https://doi.org/10.1142/S0219467822500097Cited by:16 (Source: Crossref)

    Human activity recognition from video sequences has emerged recently as pivotal research area due to its importance in a large number of applications such as real-time surveillance monitoring, healthcare, smart homes, security, behavior analysis, and many more. However, lots of challenges also exist such as intra-class variations, object occlusion, varying illumination condition, complex background, camera motion, etc. In this work, we introduce a novel feature descriptor based on the integration of magnitude and orientation information of optical flow and histogram of oriented gradients which gives an efficient and robust feature vector for the recognition of human activities for real-world environment. In the proposed approach first we computed magnitude and orientation of the optical flow separately then a local-oriented histogram of magnitude and orientation of motion flow vectors are computed using histogram of oriented gradients followed by linear combination feature fusion strategy. The resultant features are then processed by a multiclass Support Vector Machine (SVM) classifier for activity recognition. The experimental results are performed over different publically available benchmark video datasets such as UT interaction, CASIA, and HMDB51 datasets. The effectiveness of the proposed approach is evaluated in terms of six different performance parameters such as accuracy, precision, recall, specificity, F-measure, and Matthew’s correlation coefficient (MCC). To show the significance of the proposed method, it is compared with the other state-of-the-art methods. The experimental result shows that the proposed method performs well in comparison to other state-of-the-art methods.

    Remember to check out the Check out our Most Cited Articles!

    Check out these titles on Image Analysis