World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PERFORMANCE LIMITS OF SIMULATION MODELS FOR NOISE CHARACTERIZATION OF MM WAVE DEVICES

    https://doi.org/10.1142/S0219477507003957Cited by:0 (Source: Crossref)

    Based on Boltzmann transport equation, the drift-diffusion, hydrodynamic, and Monte-Carlo physical simulators are accurately developed. For each simulator, the model equations are self-consistently solved with Poisson equation, and with Schrödinger equation when quantization effects take place, in one and two-dimensions to characterize the operation and optimize the structure of mm-wave devices. The effects of the device dimensions, biasing conditions, and operating frequencies on the accuracy of results obtained from the simulators are thoroughly investigated. Based on physical understanding of the models, the simulation results are analyzed to fully determine the limits at which a certain device simulator can be accurately and efficiently used to characterize the noise behavior of mm-wave devices.