AN EMPIRICAL STUDY OF THE PROBABILITY DENSITY FUNCTION OF HF NOISE (PART II)
Abstract
The impetus for investigating the probability density function of high-frequency (HF) noise arises from the requirement for a better noise model for automatic modulation recognition techniques. Many current modulation recognition methods still assume Gaussian noise models for the transmission medium. For HF communications this can be an incorrect assumption. Whereas a previous investigation [1] focuses on the noise density function in an urban area of Adelaide Australia, this work studies the noise density function in a remote country location east of Adelaide near Swan Reach, South Australia. Here, the definition of HF noise is primarily of natural origins – it is therefore impulsive – and excludes man-made noise sources. A new method for measuring HF noise is introduced that is used over a 153 kHz bandwidth at various frequencies across the HF band. The method excises man-made signals and calculates the noise PDF from the residue. Indeed, the suitability of the Bi-Kappa distribution at modeling HF noise is found to be even more compelling than suggested by the results of the earlier investigation.