World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON MAXIMAL NON-ACCP SUBRINGS

    https://doi.org/10.1142/S0219498807002545Cited by:12 (Source: Crossref)

    A domain R is a maximal non-ACCP subring of its quotient field if and only if R is either a two-dimensional valuation domain with a DVR overring or a one-dimensional nondiscrete valuation domain. If R ⊂ S is a minimal ring extension and S is a domain, then (R,S) is a residually algebraic pair. If S is a domain but not a field, a maximal non-ACCP subring extension R ⊂ S is a minimal ring extension if (R,S) is a residually algebraic pair and R is quasilocal. Results with a similar flavor are given for domains R ⊂ S sharing a nonzero ideal, with applications to rings R of the form A + XB[X] or A + XB[[X]]. If R ⊂ S is a minimal ring extension such that R is a domain and S is not (R-algebra isomorphic to) an overring of R, then R satisfies ACCP if and only if S satisfies ACCP.

    AMSC: Primary 13B99, Primary 13G05, Primary 13A15, Secondary 13C13, Secondary 13F05, Secondary 13B21