ON MAXIMAL NON-ACCP SUBRINGS
Abstract
A domain R is a maximal non-ACCP subring of its quotient field if and only if R is either a two-dimensional valuation domain with a DVR overring or a one-dimensional nondiscrete valuation domain. If R ⊂ S is a minimal ring extension and S is a domain, then (R,S) is a residually algebraic pair. If S is a domain but not a field, a maximal non-ACCP subring extension R ⊂ S is a minimal ring extension if (R,S) is a residually algebraic pair and R is quasilocal. Results with a similar flavor are given for domains R ⊂ S sharing a nonzero ideal, with applications to rings R of the form A + XB[X] or A + XB[[X]]. If R ⊂ S is a minimal ring extension such that R is a domain and S is not (R-algebra isomorphic to) an overring of R, then R satisfies ACCP if and only if S satisfies ACCP.