World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SOME PROPERTIES ON ISOCLINISM OF LIE ALGEBRAS AND COVERS

    https://doi.org/10.1142/S0219498808002965Cited by:15 (Source: Crossref)

    In this paper, we give some equivalent conditions for Lie algebras to be isoclinic. In particular, it is shown that if two Lie algebras L and K are isoclinic then L can be constructed from K and vice versa using the operations of forming direct sums, taking subalgebras, and factoring Lie algebras. We also study connection between isoclinic and the Schur multiplier of Lie algebras. In addition, we deal with some properties of covers of Lie algebras whose Schur multipliers are finite dimensional and prove that all covers of any abelian Lie algebra have Hopfian property. Finally, we indicate that if a Lie algebra L belongs to some certain classes of Lie algebras then so does its cover.

    This research was supported by a grant from Iran National Science Foundation (INSF).

    AMSC: 17B40, 17B99