World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AUTOMATED CHARACTERIZATION OF CARDIOVASCULAR DISEASES USING WAVELET TRANSFORM FEATURES EXTRACTED FROM ECG SIGNALS

    https://doi.org/10.1142/S0219519419400098Cited by:13 (Source: Crossref)
    This article is part of the issue:

    Cardiovascular disease has been the leading cause of death worldwide. Electrocardiogram (ECG)-based heart disease diagnosis is simple, fast, cost effective and non-invasive. However, interpreting ECG waveforms can be taxing for a clinician who has to deal with hundreds of patients during a day. We propose computing machinery to reduce the workload of clinicians and to streamline the clinical work processes. Replacing human labor with machine work can lead to cost savings. Furthermore, it is possible to improve the diagnosis quality by reducing inter- and intra-observer variability. To support that claim, we created a computer program that recognizes normal, Dilated Cardiomyopathy (DCM), Hypertrophic Cardiomyopathy (HCM) or Myocardial Infarction (MI) ECG signals. The computer program combined Discrete Wavelet Transform (DWT) based feature extraction and K-Nearest Neighbor (K-NN) classification for discriminating the signal classes. The system was verified with tenfold cross validation based on labeled data from the PTB diagnostic ECG database. During the validation, we adjusted the number of neighbors k for the machine learning algorithm. For k=3, training set has an accuracy and cross validation of 98.33% and 95%, respectively. However, when k=5, it showed constant for training set but dropped drastically to 80% for cross-validation. Hence, training set k=5 prevails. Furthermore, a confusion matrix proved that normal data was identified with 96.7% accuracy, 99.6% sensitivity and 99.4% specificity. This means an error of 3.3% will occur. For every 30 normal signals, the classifier will mislabel only 1 of the them as HCM. With these results, we are confident that the proposed system can improve the speed and accuracy with which normal and diseased subjects are identified. Diseased subjects can be treated earlier which improves their probability of survival.