World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ZIPF'S LAW AND RANDOM TEXTS

    https://doi.org/10.1142/S0219525902000468Cited by:49 (Source: Crossref)

    Random-text models have been proposed as an explanation for the power law relationship between word frequency and rank, the so-called Zipf's law. They are generally regarded as null hypotheses rather than models in the strict sense. In this context, recent theories of language emergence and evolution assume this law as a priori information with no need of explanation. Here, random texts and real texts are compared through (a) the so-called lexical spectrum and (b) the distribution of words having the same length. It is shown that real texts fill the lexical spectrum much more efficiently and regardless of the word length, suggesting that the meaningfulness of Zipf's law is high.