Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ZIPF'S LAW AND RANDOM TEXTS

    Random-text models have been proposed as an explanation for the power law relationship between word frequency and rank, the so-called Zipf's law. They are generally regarded as null hypotheses rather than models in the strict sense. In this context, recent theories of language emergence and evolution assume this law as a priori information with no need of explanation. Here, random texts and real texts are compared through (a) the so-called lexical spectrum and (b) the distribution of words having the same length. It is shown that real texts fill the lexical spectrum much more efficiently and regardless of the word length, suggesting that the meaningfulness of Zipf's law is high.

  • articleNo Access

    SOME WORD ORDER BIASES FROM LIMITED BRAIN RESOURCES: A MATHEMATICAL APPROACH

    In this paper, we propose a mathematical framework for studying word order optimization. The framework relies on the well-known positive correlation between cognitive cost and the Euclidean distance between the elements (e.g. words) involved in a syntactic link. We study the conditions under which a certain word order is more economical than an alternative word order by proposing a mathematical approach. We apply our methodology to two different cases: (a) the ordering of subject (S), verb (V) and object (O), and (b) the covering of a root word by a syntactic link. For the former, we find that SVO and its symmetric, OVS, are more economical than OVS, SOV, VOS and VSO at least 2/3 of the time. For the latter, we find that uncovering the root word is more economical than covering it at least 1/2 of the time. With the help of our framework, one can explain some Greenbergian universals. Our findings provide further theoretical support for the hypothesis that the limited resources of the brain introduce biases toward certain word orders. Our theoretical findings could inspire or illuminate future psycholinguistics or corpus linguistics studies.

  • articleNo Access

    LINEAR ORDER AS A PREDICTOR OF WORD ORDER REGULARITIES

    This is a reply to Ramon Ferrer-I-Cancho's paper in this issue "Some Word Order Biases from Limited Brain Resources: A Mathematical Approach." In this reply, I challenge the Euclidean distance model proposed in that paper by proposing a simple alternative model based on linear ordering.

  • articleNo Access

    SOME LIMITS OF STANDARD LINGUISTIC TYPOLOGY: THE CASE OF CYSOUW'S MODELS FOR THE FREQUENCIES OF THE SIX POSSIBLE ORDERINGS OF S, V AND O

    This article is a critical analysis of Michael Cysouw's comment "Linear Order as a Predictor of Word Order Regularities."