World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN INVESTIGATION OF THE PHASE TRANSITIONS OF A FAMILY OF PROBABILISTIC AUTOMATA

    https://doi.org/10.1142/S0219525904000081Cited by:0 (Source: Crossref)

    We investigate a family of totalistic probabilistic cellular automata (PCA) which depend on three parameters. For the uniform random neighborhood and for the symmetric 1D PCA the exact stationary distribution is computed for all finite n. This result is used to evaluate approximations (uni-variate and bi-variate marginals). It is proven that the uni-variate approximation (also called mean-field) is exact for the uniform random neighborhood PCA. The exact results and the approximations are used to investigate phase transitions. We compare the results of two order parameters, the uni-variate marginal and the normalized entropy. Sometimes different transitions are indicated by the Ehrenfest classification scheme. This result shows the limitations of using just one or two order parameters for detecting and classifying major transitions of the stationary distribution. Furthermore, finite size scaling is investigated. We show that extrapolations to n=∞ from numerical calculations of finite n can be misleading in difficult parameter regions. Here, exact analytical estimates are necessary.