Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The critical behavior in short time dynamics for the q = 6 and 7 state Potts models in two-dimensions is investigated. It is shown that dynamic finite-size scaling exists for first-order phase transitions.
The two-dimensional Ising model in a small external magnetic field, is simulated on the Creutz cellular automaton. The values of the static critical exponents for 0.0025 ≤ h ≤ 0.025 are estimated within the framework of the finite size scaling theory. The value of the field critical exponent is in a good agreement with its theoretical value of δ = 15. The results for 0.0025 ≤ h ≤ 0.025 are compatible with Ising critical behavior for T < Tc.
The scaling behaviors of the percolation cumulant and the surface renormalization are studied on q = 2 and 7 state Potts models. The results show that the scaling functions can be safely used to determine infinite lattice transition points and the thermal and magnetic exponents indicating that these functions have very small correction to scaling contributions.
In this work, we have proposed a new geometrical method for calculating the critical temperature and critical exponents by introducing a set of bond breaking probability values. The probability value Pc corresponding to the Coniglio–Klein probability for the transition temperature is obtained among this set of trial probabilities. Critical temperature, thermal and magnetic exponents are presented for d = 2 and d = 3, q = 2 Potts model and for the application of the method to the system with first order phase transition, q = 7 Potts model on different size lattices are employed.
The advantage of this method can be that the bond breaking probability can be applied, where the clusters are defined on a set of dynamic variables, which are different from the dynamic quantities of the actual Hamiltonian or the action of the full system. An immediate application can be to use the method on finite temperature lattice gauge theories.
The two-dimensional antiferromagnetic spin-1 Ising model with positive biquadratic interaction is simulated on a cellular automaton which based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transition of the model are presented for a comparison with those obtained from other calculations. We confirm the existence of the intermediate phase observed in previous works for some values of J/K and D/K. The values of the static critical exponents (β, γ and ν) are estimated within the framework of the finite-size scaling theory for D/K<2J/K. Although the results are compatible with the universal Ising critical behavior in the region of D/K<2J/K-4, the model does not exhibit any universal behavior in the interval 2J/K-4<D/K<2J/K.
Numerical investigation of critical exponents on a hypercubic lattice with Ld random sites with L up to 33 and d up to 7 showed that above the critical dimension the phase transitions in Ising model and percolation are not alike.
The two-dimensional BEG model with nearest neighbor bilinear and positive biquadratic interaction is simulated on a cellular automaton, which is based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transitions of the model are presented for comparison with those obtained from other calculations. We confirm the existence of the tricritical points over the phase boundary for D/K>0. The values of static critical exponents (α, β, γ and ν) are estimated within the framework of the finite size scaling theory along D/K=-1 and 1 lines. The results are compatible with the universal Ising critical behavior except the points over phase boundary.
The three-dimensional BC model is simulated on a cellular automaton which improved from the Creutz cellular automaton for simple cubic lattice. The phase diagram characterizing phase transition of the model is obtained for a comparison with those obtained from other calculations. The simulations confirm the existence of a tricritical point at which the phase transition changes from second-order to first-order at D/J =2.82. For the determined of the tricritical point, the thermodynamics quantities are computed using two different procedures which is called as the standard and the cooling algorithm for the anisotropy parameter values in the interval 3≥D/J≥-8. The simulations indicates that the cooling algorithm is a suitable procedure for the calculations near the first-order phase transition region, and the cooling rate is an important parameter in the determining of the phase boundary. The estimated critical temperatures for D/J =0 and 2.82 are compatible with the series expansion results.
The critical coarsening dynamics of the spin S =1/2, 3/2 antiferromagnetic Ising model on a triangular lattice is studied by the dynamic Monte Carlo simulation using a heat bath algorithm. The triangular antiferromagnetic Ising (TAI) model possesses an intrinsic geometrical frustration and a large degeneracy of ground state which may affect the equilibrium and non-equilibrium critical behaviors. The S =1/2 TAI has no phase transition at a finite temperature, but it was suggested that the S =3/2 TAI has the Kosterlitz–Thouless (KT)-type phase transition at a finite temperature. We employ a finite size scaling approach for the correlation function from the short-time dynamics of the S =1/2, 3/2 TAI to calculate the values of the static critical exponent η and the dynamic exponent z. For the S =1/2 TAI, our dynamic scaling analysis provides η =0.498±0.006 and z =2.278±0.020 at T =0, agreeing with the previous results. For the S =3/2 TAI, after identifying a KT-transition temperature TKT =0.51±0.01, we find the temperature-dependent η ranging from 0.301±0.008 at T =0.51 to 0.224±0.016 at T =0 along the KT-line whereas the value of z =2.20±0.06 is constant for T≤TKT. It is shown that the spin S =3/2 TAI model and the two-dimensional XY model, sharing the KT-type phase transition, exhibit similar static critical and coarsening dynamics behavior. For both the S =1/2, 3/2 TAI, the value of z (η) is compatible with (larger than) that of the Ising model at Tc and the XY model for T≤TKT in two-dimension. Our results imply that although the quasi-long-range order disappears with ηXY =0 in the two-dimensional XY model at T =0, the S =3/2 TAI still maintains it with ηTAI =0.224 due to the effect of a frustration and a high degeneracy of ground state.
We study a random fiber bundle model with tips of the fibers placed on a graph having co-ordination number 3. These fibers follow local load sharing with uniformly distributed threshold strengths of the fibers. We have studied the critical behavior of the model numerically using a finite size scaling method and the mean field critical behavior is established. The avalanche size distribution is also found to exhibit a mean field nature in the asymptotic limit.
Some recent progress in Monte Carlo simulations of spin glasses will be presented. The problem of slow dynamics at low temperatures is partially alleviated by use of the parallel tempering (replica exchange) method. A useful technique to check for equilibration (applicable only for a Gaussian distribution) will be discussed. It will be argued that a finite size scaling analysis of the scaled correlation length of the system is a good approach with which to investigate phase transitions in spin glasses. This method will be used to study two questions:
(i) whether there is a phase transition in zero field in the Heisenberg spin glass in three dimensions, and
(ii) whether there is phase transition in a magnetic field in an Ising spin glass, also in three dimensions.
A model of opinion dynamics with two types of agents as social actors are presented, using the Ising thermodynamic model as the dynamics template. The agents are considered as opportunists which live at sites and interact with the neighbors, or fanatics/missionaries which move from site to site randomly in persuasion of converting agents of opposite opinion with the help of opportunists. Here, the moving agents act as an external influence on the opportunists to convert them to the opposite opinion. It is shown by numerical simulations that such dynamics of opinion formation may explain some details of consensus formation even when one of the opinions are held by a minority. Regardless the distribution of the opinion, different size societies exhibit different opinion formation behavior and time scales. In order to understand general behavior, the scaling relations obtained by comparing opinion formation processes observed in societies with varying population and number of randomly moving agents are studied. For the proposed model two types of scaling relations are observed. In fixed size societies, increasing the number of randomly moving agents give a scaling relation for the time scale of the opinion formation process. The second type of scaling relation is due to the size dependent information propagation in finite but large systems, namely finite-size scaling.
A general numerical method is presented to locate the partition function zeros in the complex β plane for large lattice sizes. We apply this method to the 2D Ising model and results are reported for square lattice sizes up to L = 64. We also propose an alternative method to evaluate corrections to scaling which relies only on the leading zeros. This method is illustrated with our data.
With the projector quantum Monte Carlo algorithm and the stochastic diagonalization it is possible to calculate the ground state of the Hubbard model for small finite clusters. Nevertheless the usual finite size scaling of the Hubbard model has problems of deducing the behavior of the infinite system correctly from the numerical data of small system sizes. Therefore we study the finite size scaling of the superconducting correlation functions in superconducting BCS-reduced Hubbard models to analyze the finite size behavior in small finite clusters. The ground state of the BCS-reduced Hubbard models is calculated with the stochastic diagonalization without any approximations. As result of these analyses we propose a new finite size scaling ansatz for the Hubbard model, which is able describe the finite size effects in a consistent way taking the corrections to scaling into account, which are dominant for weak interaction strength and small clusters. With this new finite size scaling ansatz it is possible to give evidence for superconductivity for all interaction strengths for both the attractive tt'-Hubbard model (with s-wave symmetry) and the repulsive tt'-Hubbard model (with dx2-y2-wave symmetry).
In this paper we revisit the glass model describing the macroscopic behavior of the High-Temperature superconductors. We link the glass model at the microscopic level to the striped phase phenomenon, recently discussed widely. The size of the striped phase domains is consistent with earlier predictions of the glass model when it was introduced for High-Temperature Superconductivity in 1987. In an additional step we use the Hubbard model to describe the microscopic mechanism for d-wave pairing within these finite size stripes.
We discuss the implications for superconducting correlations of the Hubbard model, which are much higher for stripes than for squares, for finite size scaling, and for the new view of the glass model picture.
We investigate a family of totalistic probabilistic cellular automata (PCA) which depend on three parameters. For the uniform random neighborhood and for the symmetric 1D PCA the exact stationary distribution is computed for all finite n. This result is used to evaluate approximations (uni-variate and bi-variate marginals). It is proven that the uni-variate approximation (also called mean-field) is exact for the uniform random neighborhood PCA. The exact results and the approximations are used to investigate phase transitions. We compare the results of two order parameters, the uni-variate marginal and the normalized entropy. Sometimes different transitions are indicated by the Ehrenfest classification scheme. This result shows the limitations of using just one or two order parameters for detecting and classifying major transitions of the stationary distribution. Furthermore, finite size scaling is investigated. We show that extrapolations to n=∞ from numerical calculations of finite n can be misleading in difficult parameter regions. Here, exact analytical estimates are necessary.
We present a finite-size scaling analysis of the entanglement in a two-dimensional arrays of quantum dots modeled by the Hubbard Hamiltonian on a triangular lattice. Using multistage block renormalization group approach, we have found that there is an abrupt jump of the entanglement when a first-order quantum phase transition occurs. At the critical point, the entanglement is constant, independent of the block size.