World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Collectives Formation and Speciliazation in BiosystemsNo Access

ON MODELING COMPLEX COLLECTIVE BEHAVIOR IN MYXOBACTERIA

    https://doi.org/10.1142/S0219525906000860Cited by:1 (Source: Crossref)

    This paper reviews recent progress in modeling collective behaviors in myxobacteria using lattice gas cellular automata approach (LGCA). Myxobacteria are social bacteria that swarm, glide on surfaces and feed cooperatively. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies. Cells inside fruiting bodies differentiate into round, nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction. However, myxobacteria aggregation is the consequence of direct cell-contact interactions, not chemotaxis. In this paper, we review biological LGCA models based on local cell–cell contact signaling that have reproduced the rippling, streaming, aggregating and sporulation stages of the fruiting body formation in myxobacteria.