World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

NETWORK OF SCIENTIFIC CONCEPTS: EMPIRICAL ANALYSIS AND MODELING

    https://doi.org/10.1142/S0219525921400014Cited by:3 (Source: Crossref)
    This article is part of the issue:

    Concepts in a certain domain of science are linked via intrinsic connections reflecting the structure of knowledge. To get a qualitative insight and a quantitative description of this structure, we perform empirical analysis and modeling of the network of scientific concepts in the domain of physics. To this end, we use a collection of manuscripts submitted to the e-print repository arXiv and the vocabulary of scientific concepts collected via the ScienceWISE.info platform and construct a network of scientific concepts based on their co-occurrences in publications. The resulting complex network possesses a number of specific features (high node density, dissortativity, structural correlations, skewed node degree distribution) that cannot be understood as a result of simple growth by several commonly used network models. We show that the model based on a simultaneous account of two factors, growth by blocks and preferential selection, gives an explanation of empirically observed properties of the concepts network.

    References

    • 1. ScienceWISE.info, http://sciencewise.info (accessed June 20, 2020). Google Scholar
    • 2. Barabási, A.-L., Network science book, Netw. Sci., Vol. 625 (Cambridge University Press, 2016). Google Scholar
    • 3. Barabási, A.-L. and Albert, R., Emergence of scaling in random networks, Science 286 [1999] 509–512. Crossref, ISIGoogle Scholar
    • 4. Beam, E., Appelbaum, L. G., Jack, J., Moody, J. and Huettel, S. A., Mapping the semantic structure of cognitive neuroscience, J. Cogn. Neurosci. 26 [2014] 1949–1965. Crossref, ISIGoogle Scholar
    • 5. Bonifazi, P., Goldin, M., Picardo, M. A., Jorquera, I., Cattani, A., Bianconi, G., Represa, A., Ben-Ari, Y. and Cossart, R., GABAergic hub neurons orchestrate synchrony in developing hippocampal networks, Science 326 [2009] 1419–1424. Crossref, ISIGoogle Scholar
    • 6. Borgs, C., Chayes, J., Lovász, L., Sós, V. and Vesztergombi, K., Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing, Adv. Math. 219 [2008] 1801–1851. Crossref, ISIGoogle Scholar
    • 7. Brodiuk, S., Palchykov, V. and Holovatch, Y., Embedding technique and network analysis of scientific innovations emergence in an arXiv-based concept network, in 2020 IEEE Third Int. Conf. Data Stream Mining Processing (DSMP) (Lviv, Ukraine, 2020), pp. 366–371. https://doi.org/10.1109/DSMP47368.2020.9204220 CrossrefGoogle Scholar
    • 8. Caron, F. and Fox, E. B., Sparse graphs using exchangeable random measures, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79 [2017] 1295–1366. Crossref, ISIGoogle Scholar
    • 9. Cattuto, C., Barrat, A., Baldassarri, A., Schehr, G. and Loreto, V., Collective dynamics of social annotation, Proc. Natl. Acad. Sci. USA 106 [2009] 10511–10515. Crossref, ISIGoogle Scholar
    • 10. Constantin, A., Automatic Structure and Keyphrase Analysis of Scientific Publications (The University of Manchester, UK, 2014). Google Scholar
    • 11. Courtney, O. T. and Bianconi, G., Dense power-law networks and simplicial complexes, Phys. Rev. E 97 [2018] 052303. Crossref, ISIGoogle Scholar
    • 12. Crane, H. and Dempsey, W., Edge exchangeable models for network data, arXiv:1603.04571. Google Scholar
    • 13. da Fontoura Costa, L., Learning about knowledge: A complex network approach, Phys. Rev. E 74 [2006] 026103. Crossref, ISIGoogle Scholar
    • 14. Diaconis, P. and Janson, S., Graph limits and exchangeable random graphs, arXiv:0712.2749. Google Scholar
    • 15. Erdös, P. and Rényi, A., On random graphs, Publ. Math. Debrecen 6 [1959] 290–297. CrossrefGoogle Scholar
    • 16. Evans, J. A. and J. G. Foster, Metaknowledge, Science 331 [2011] 721–725. Crossref, ISIGoogle Scholar
    • 17. Fensel, D., Languages, Ontologies (Springer, Berlin, Heidelberg, 2001), pp. 11–18. CrossrefGoogle Scholar
    • 18. Foster, J. G., Rzhetsky, A. and Evans, J. A., Tradition and innovation in scientists’ research strategies, Am. Sociol. Rev. 80 [2015] 875–908. Crossref, ISIGoogle Scholar
    • 19. Glänzel, W.Moed, H. F.Schmoch, U.Thelwall, M. (eds.), Springer Handbook of Science and Technology Indicators (Springer International Publishing, 2019). CrossrefGoogle Scholar
    • 20. Hanel, R., Thurner, S. and Klimek, P., Introduction to the Theory of Complex Systems (Oxford University Press, 2018). Google Scholar
    • 21. Herrera, M., Roberts, D. C. and Gulbahce, N., Mapping the evolution of scientific fields, PLOS One 5 [2010] e10355. Crossref, ISIGoogle Scholar
    • 22. Holovatch, Y., Kenna, R. and Thurner, S., Complex systems: Physics beyond physics, Eur. J. Phys. 38 [2017] 023002. Crossref, ISIGoogle Scholar
    • 23. Horrocks, I., Ontologies and the semantic web, Commun. ACM 51 [2008] 58–67. Crossref, ISIGoogle Scholar
    • 24. Hu, F., Ma, L., Zhan, X.-X., Zhou, Y., Liu, C., Zhao, H. and Zhang, Z.-K., The aging effect in evolving scientific citation networks, Scientometrics 126(5) [2021] 4297–4309. Crossref, ISIGoogle Scholar
    • 25. Iacopini, I., Milojević, S. and Latora, V., Network dynamics of innovation processes, Phys. Rev. Lett. 120 [2018] 048301. Crossref, ISIGoogle Scholar
    • 26. Johnson, J., Hypernetworks in the Science of Complex Systems, Vol. 3 (World Scientific, 2013). Google Scholar
    • 27. Krasnytska, M., Berche, B., Holovatch, Y. and Kenna, R., Ising model with variable spin/agent strengths, J. Phys. Complexity 1 [2020] 035008. CrossrefGoogle Scholar
    • 28. Krenn, M. and Zeilinger, A., Predicting research trends with semantic and neural networks with an application in quantum physics, Proc. Natl. Acad. Sci. USA 117 [2020] 1910–1916. Crossref, ISIGoogle Scholar
    • 29. Kuhn, T. S., The Essential Tension (The University of Chicago, 1977). CrossrefGoogle Scholar
    • 30. Luce, R. D. and Perry, A. D., A method of matrix analysis of group structure, Psychometrika 14 [1949] 95–116. CrossrefGoogle Scholar
    • 31. Newman, M. E., Assortative mixing in networks, Phys. Rev. Lett. 89 [2002] 208701. Crossref, ISIGoogle Scholar
    • 32. Palchykov, V., Gemmetto, V., Boyarsky, A. and Garlaschelli, D., Ground truth? Concept-based communities versus the external classification of physics manuscripts, EPJ Data Sci. 5 [2016] 28. Crossref, ISIGoogle Scholar
    • 33. Palchykov, V. and Holovatch, Y., Bipartite graph analysis as an alternative to reveal clusterization in complex systems, in 2018 IEEE Second Int. Conf. Data Stream Mining Processing (DSMP) (Lviv, Ukraine, 2018), pp. 84–87. https://doi.org/10.1109/DSMP.2018.8478505 CrossrefGoogle Scholar
    • 34. Palchykov, V., Krasnytska, M., Mryglod, O. and Holovatch, Y., A mechanism for evolution of the physical concepts network, Condens. Matter Phys. 24 [2021] 1–6. Crossref, ISIGoogle Scholar
    • 35. Pan, R. K., Sinha, S., Kaski, K. and Saramäki, J., The evolution of interdisciplinarity in physics research, Sci. Rep. 2 [2012] 551. Crossref, ISIGoogle Scholar
    • 36. Rzhetsky, A., Foster, J. G., Foster, I. T. and Evans, J. A., Choosing experiments to accelerate collective discovery, Proc. Natl. Acad. Sci. USA 112 [2015] 14569–14574. Crossref, ISIGoogle Scholar
    • 37. Seyed-Allaei, H., Bianconi, G. and Marsili, M., Scale-free networks with an exponent less than two, Phys. Rev. E 73 [2006] 046113. Crossref, ISIGoogle Scholar
    • 38. Silva, F. N., Travençolo, B. A. N., Viana, M. P. and da Fontoura Costa, L., Identifying the borders of mathematical knowledge, J. Phys. A, Math. Theor. 43 [2010] 325202. Crossref, ISIGoogle Scholar
    • 39. Sowa, J. F., Semantic networks, in Encyclopedia of Artificial Intelligence, 2nd edn. Shapiro, S. C. (ed.) (Wiley, 1992), p. 25. Google Scholar
    • 40. The network analysis package, igraph, https://igraph.org. Google Scholar
    • 41. Thurner, S., Liu, W., Klimek, P. and Cheong, S. A., The role of mainstreamness and interdisciplinarity for the relevance of scientific papers, PLOS One 15 [2020] e0230325. Crossref, ISIGoogle Scholar
    • 42. Uzzi, B., Mukherjee, S., Stringer, M. and Jones, B., Atypical combinations and scientific impact, Science 342 [2013] 468–472. Crossref, ISIGoogle Scholar
    • 43. van Eck, N. J. and Waltman, L., Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics 84 [2009] 523–538. Crossref, ISIGoogle Scholar
    • 44. Wang, D. and Barabási, A.-L., The Science of Science (Cambridge University Press, 2021), p. 304. CrossrefGoogle Scholar
    • 45. Wang, J.-W., Rong, L.-L., Deng, Q.-H. and Zhang, J.-Y., Evolving hypernetwork model, Eur. Phys. J. B 77 [2010] 493–498. Crossref, ISIGoogle Scholar
    • 46. Wolfe, P. J. and Olhede, S. C., Nonparametric graphon estimation, arXiv:1309.5936. Google Scholar
    • 47. Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y. and Stanley, H. E., The science of science: From the perspective of complex systems, Phys. Rep. 714–715 [2017] 1–73. Crossref, ISIGoogle Scholar
    • 48. Zhou, T., Medo, M., Cimini, G., Zhang, Z.-K. and Zhang, Y.-C., Emergence of scale-free leadership structure in social recommender systems, PLOS One 6 [2011] 1–6. ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in Complex Systems today!