World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

OPTIMIZING THE RATE OF CONVERGENCE IN SOME NEW CLASSES OF SEQUENCES CONVERGENT TO EULER'S CONSTANT

    https://doi.org/10.1142/S0219530510001539Cited by:37 (Source: Crossref)

    A new class of sequences convergent to Euler's constant is investigated. Special choices of parameters show that the class includes the original sequence defined by Euler, as well as more recently defined sequences due to DeTemple [1] and Vernescu [9]. It is shown how the rate of convergence of the sequences can be improved by computing optimal values of the parameters.

    AMSC: 26D15, 11Y60, 41A25, 34E05