World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE ON THE ASIAN SYMPOSIUM ON NANOTECHNOLOGY AND NANOSCIENCE 2002 (ASIANANO 2002); EDITED BY MASATSUGU SHIMOMURA AND TERUYA ISHIHARANo Access

MOLECULAR RECOGNITION OF NUCLEOBASES ATTACHED TO SELF-ASSEMBLED MONOLAYERS DETECTED BY CHEMICAL FORCE MICROSCOPY AND QUARTZ CRYSTAL MICROBALANCE

    https://doi.org/10.1142/S0219581X02000863Cited by:2 (Source: Crossref)

    In order to develop a new DNA sequencing method by using chemical force microscopy (CFM), we have investigated the interaction of the hydrogen bonding between surfaces of nucleobase self-assembled monolayers (SAMs) and AFM-tips modified with the nucleobases. The two different adhesion forces, the jump-in force and pull-off force, between the AFM-tip modified with cytosine-SAM and the surfaces of four kinds of nucleobase SAMs were measured in water (20°C) by CFM. The adsorption of poly (C) onto a nucleobase-SAM on a gold electrode of quartz crystal microbalance (QCM) was measured as resonance frequency changes. The relative relation among four bases showed similar tendency in the adhesion force measured by the cytosine AFM-tip and in the adsorption amount of poly (C) on the QCM electrode as well as in the theoretically calculated interaction energies between two nucleobases.