World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

QUASICLASSICAL TRAJECTORY STUDY OF STEREODYNAMICS FOR THE REACTIONS Li+HF/DF/TF

    https://doi.org/10.1142/S0219633613500089Cited by:0 (Source: Crossref)

    Stereodynamics of the reaction Li + HF (v = 0,j = 0) → LiF + H and its isotopic variants on the ground electronic state (12A′) potential energy surface (PES) are studied by employing the quasiclassical trajectory (QCT) method. At a collision energy of 2.2 kcal/mol, product rotational angular momentum distributions, P(θr) and P(ϕr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y-axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS00 distribution shows a sideways scattering for the reaction Li + HF and a strongly backward scattering for the reaction Li + DF. However, it displays both the forward and backward scatterings for the reaction Li + TF. These features demonstrate that the Li + HF and Li + DF reactions proceed predominantly through the direct reaction mechanism. However, the Li + TF reaction undergoes both the direct and indirect reaction mechanisms. The PDDCS21- distribution indicates that the product angular distributions are anisotropic.