World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Diagnosis of mild Alzheimer disease through the analysis of eye movements during reading

    https://doi.org/10.1142/S0219635215500090Cited by:26 (Source: Crossref)

    Reading requires the integration of several central cognitive subsystems, ranging from attention and oculomotor control to word identification and language comprehension. Reading saccades and fixations contain information that can be correlated with word properties. When reading a sentence, the brain must decide where to direct the next saccade according to what has been read up to the actual fixation. In this process, the retrieval memory brings information about the current word features and attributes into working memory. According to this information, the prefrontal cortex predicts and triggers the next saccade. The frequency and cloze predictability of the fixated word, the preceding words and the upcoming ones affect when and where the eyes will move next. In this paper we present a diagnostic technique for early stage cognitive impairment detection by analyzing eye movements during reading proverbs. We performed a case-control study involving 20 patients with probable Alzheimer's disease and 40 age-matched, healthy control patients. The measurements were analyzed using linear mixed-effects models, revealing that eye movement behavior while reading can provide valuable information about whether a person is cognitively impaired. To the best of our knowledge, this is the first study using word-based properties, proverbs and linear mixed-effect models for identifying cognitive abnormalities.