World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE ERRORS OF MULTIDIMENSIONAL MRA BASED ON NON-SEPARABLE SCALING FUNCTIONS

    https://doi.org/10.1142/S0219691306001397Cited by:3 (Source: Crossref)

    In this paper, we deal with two different problems. First, we provide the convergence rates of multiresolution approximations, with respect to the supremum norm, for the class of elliptic splines defined in Ref. 10, and in particular for polyharmonic splines. Secondly, we consider the problem of recovering a function from a sample of noisy data. To this end, we define a linear and smooth estimator obtained from a multiresolution process based on polyharmonic splines. We discuss its asymptotic properties and we prove that it converges to the unknown function almost surely.

    AMSC: 65D07, 65D10, 41A15, 41A30, 42C40