Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we deal with two different problems. First, we provide the convergence rates of multiresolution approximations, with respect to the supremum norm, for the class of elliptic splines defined in Ref. 10, and in particular for polyharmonic splines. Secondly, we consider the problem of recovering a function from a sample of noisy data. To this end, we define a linear and smooth estimator obtained from a multiresolution process based on polyharmonic splines. We discuss its asymptotic properties and we prove that it converges to the unknown function almost surely.
In the paper, we present a family of multivariate compactly supported scaling functions, which we call as elliptic scaling functions. The elliptic scaling functions are the convolution of elliptic splines, which correspond to homogeneous elliptic differential operators, with distributions. The elliptic scaling functions satisfy refinement relations with real isotropic dilation matrices. The elliptic scaling functions satisfy most of the properties of the univariate cardinal B-splines: compact support, refinement relation, partition of unity, total positivity, order of approximation, convolution relation, Riesz basis formation (under a restriction on the mask), etc. The algebraic polynomials contained in the span of integer shifts of any elliptic scaling function belong to the null-space of a homogeneous elliptic differential operator. Similarly to the properties of the B-splines under differentiation, it is possible to define elliptic (not necessarily differential) operators such that the elliptic scaling functions satisfy relations with these operators. In particular, the elliptic scaling functions can be considered as a composition of segments, where the function inside a segment, like a polynomial in the case of the B-splines, vanishes under the action of the introduced operator.
In this paper, the improved localized method of approximated particular solutions (ILMAPS) using polyharmonic splines (PHS) together with a low-degree of polynomial basis is used to approximate solutions of various nonlinear elliptic Partial Differential Equations (PDEs). The method is completely meshfree, and it uses a radial basis function (RBF) that has no shape parameters. The discretization process is done through a simple collocation technique on a set of points in the local domain of influence. Resulted system of nonlinear algebraic equations is solved by the Picard method.
The performance of the proposed method is tested on various nonlinear elliptical problems, including the Poisson-type problems in 2D and 3D with constant or variable coefficients on rectangular or irregular domains and the Poisson–Boltzmann equation with Dirichlet boundary conditions or mixed boundary conditions. The effect of domain shapes in 2D and 3D, types of boundary conditions, and degrees of PHS, and order of polynomial basis are examined. The performance of the method is compared with other bases such as multiquadrics (MQ) basis functions, and with results reported in the literature (method of particular solutions using polynomials). The numerical experiments suggest that ILMAPS with polyharmonic splines yields considerably superior accuracy than other RBFs as well as other approaches reported in the literature for solving nonlinear elliptic PDEs.