World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ELLIPTIC SCALING FUNCTIONS AS COMPACTLY SUPPORTED MULTIVARIATE ANALOGS OF THE B-SPLINES

    https://doi.org/10.1142/S0219691314500180Cited by:6 (Source: Crossref)

    In the paper, we present a family of multivariate compactly supported scaling functions, which we call as elliptic scaling functions. The elliptic scaling functions are the convolution of elliptic splines, which correspond to homogeneous elliptic differential operators, with distributions. The elliptic scaling functions satisfy refinement relations with real isotropic dilation matrices. The elliptic scaling functions satisfy most of the properties of the univariate cardinal B-splines: compact support, refinement relation, partition of unity, total positivity, order of approximation, convolution relation, Riesz basis formation (under a restriction on the mask), etc. The algebraic polynomials contained in the span of integer shifts of any elliptic scaling function belong to the null-space of a homogeneous elliptic differential operator. Similarly to the properties of the B-splines under differentiation, it is possible to define elliptic (not necessarily differential) operators such that the elliptic scaling functions satisfy relations with these operators. In particular, the elliptic scaling functions can be considered as a composition of segments, where the function inside a segment, like a polynomial in the case of the B-splines, vanishes under the action of the introduced operator.

    AMSC: 42C40, 41A63, 41A15