World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Differential weights-based band selection for hyperspectral image classification

    https://doi.org/10.1142/S0219691317500655Cited by:3 (Source: Crossref)

    Band selection plays a key role in the hyperspectral image classification since it helps to reduce the expensive cost of computation and storage. In this paper, we propose a supervised hyperspectral band selection method based on differential weights, which depict the contribution degree of each band for classification. The differential weights are obtained in the training stage by calculating the sum of weight differences between positive and negative classes. Using the effective one-class Support Vector Machine (SVM), the bands corresponding to large differential weights are extracted as discriminative features to make the classification decision. Moreover, label information from training data is further exploited to enhance the classification performance. Finally, experiments on three public datasets, as well as comparison with other popular feature selection methods, are carried out to validate the proposed method.

    AMSC: 49J30, 49J35