Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Differential weights-based band selection for hyperspectral image classification

    Band selection plays a key role in the hyperspectral image classification since it helps to reduce the expensive cost of computation and storage. In this paper, we propose a supervised hyperspectral band selection method based on differential weights, which depict the contribution degree of each band for classification. The differential weights are obtained in the training stage by calculating the sum of weight differences between positive and negative classes. Using the effective one-class Support Vector Machine (SVM), the bands corresponding to large differential weights are extracted as discriminative features to make the classification decision. Moreover, label information from training data is further exploited to enhance the classification performance. Finally, experiments on three public datasets, as well as comparison with other popular feature selection methods, are carried out to validate the proposed method.

  • chapterNo Access

    Data Mining of Multi-Dimensional Functional Data for Manufacturing Fault Diagnosis

    Multi-dimensional functional data, such as time series data and images from manufacturing processes, have been used for fault detection and quality improvement in many engineering applications such as automobile manufacturing, semiconductor manufacturing, and nano-machining systems. Extracting interesting and useful features from multi-dimensional functional data for manufacturing fault diagnosis is more difficult than extracting the corresponding patterns from traditional numeric and categorical data due to the complexity of functional data types, high correlation, and nonstationary nature of the data. This chapter discusses accomplishments and research issues of multi-dimensional functional data mining in the following areas: dimensionality reduction for functional data, multi-scale fault diagnosis, misalignment prediction of rotating machinery, and agricultural product inspection based on hyperspectral image analysis.