World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Mining subsequent trend patterns from financial time series

    https://doi.org/10.1142/S0219691320500101Cited by:8 (Source: Crossref)

    Chart patterns are one of the important tools used by the financial analysts for predicting future price trends (subsequent trends) in stock markets. Although many works related to the descriptions of chart patterns and several effective methods to identify chart patterns from the financial time series have been proposed in recent years, there is no in-depth study about the general characteristics of the subsequent trends. In this paper, we proposed a general framework for mining subsequent trend for chart patterns. We extensively analyze the characteristics of subsequent trends of chart patterns found with the proposed framework. Based on the analysis, we propose a concept called subsequent trend pattern by mining frequently occurring shapes from these trends. The process of subsequent trend pattern mining was evaluated on a dataset containing 502 time series from S&P 500 and a test dataset containing 494 stocks from Yahoo finance. The proposed concept of subsequent trend pattern provides a solid foundation for the understanding of chart patterns in predicting future price movement and extends the formal definition of chart patterns.

    AMSC: 68U35