World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Long short-term memory network-based wastewater quality prediction model with sparrow search algorithm

    https://doi.org/10.1142/S0219691323500194Cited by:4 (Source: Crossref)

    The wastewater treatment process is characterized by uncertainty, non-linearity, time delay and complexity, and is susceptible to many dynamic factors. Since some key water quality parameters are not available in real time, a Long Short-Term Memory (LSTM) network water quality prediction model based on sparrow search algorithm (SSA-LSTM) and attention mechanism is proposed to solve the problem. In this model, we take historical data as input, constructs models to learn the feature of internal dynamic changes, introduces the attention mechanism, assigns different weights to the hidden state of the LSTM network by mapping weightings with the learning parameter matrix, and uses the SSA to select the optimal hyperparameters for prediction. As high-latitude feature vectors are subject to the curse of dimension, a PCA-LSTM model is further proposed to apply the Principal Component Analysis (PCA) method to the SSA-LSTM model to reduce the dimensionality of the original data. The SSA-LSTM model without the PCA method (NPCA-LSTM) and the PCA-LSTM model are applied to predict wastewater quality and the PCA-LSTM model shows higher predictive ability.

    AMSC: 22E46, 53C35, 57S20