Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Optimization in the construction of cardinal and symmetric wavelets on the line

    https://doi.org/10.1142/S021969132150048XCited by:0 (Source: Crossref)

    We present an optimization approach to wavelet architecture that hinges on the Zak transform to formulate the construction as a minimization problem. The transform warrants parametrization of the quadrature mirror filter in terms of the possible integer sample values of the scaling function and the associated wavelet. The parameters are predicated to satisfy constraints derived from the conditions of regularity, compact support and orthonormality. This approach allows for the construction of nearly cardinal scaling functions when an objective function that measures deviation from cardinality is minimized. A similar objective function based on a measure of symmetry is also proposed to facilitate the construction of nearly symmetric scaling functions on the line.

    AMSC: 42C40, 42B99, 65T60, 47N10