World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Generalization bounds of incremental SVM

    https://doi.org/10.1142/S0219691324500279Cited by:0 (Source: Crossref)

    Incremental learning is one of the effective methods of learning from the accumulated training samples and the large-scale dataset. The main advantages of incremental learning consist of making full use of historical information, reducing the training scale greatly and saving space and time consumption. Despite extensive research on incremental support vector machine (SVM) learning algorithms, most of them are based on independent and identically distributed samples (i.i.d.). Not only that, there has been no theoretical analysis of incremental SVM learning algorithms. In this paper, we mainly study the generalization bounds of this incremental SVM learning algorithm whose samples are based on uniformly geometric Markov chains, and exponentially strongly mixing sequence. As a special case, we also obtain the generalization bounds of i.i.d. samples.

    AMSC: 22E46, 53C35, 57S20