Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Online regularized pairwise learning with non-i.i.d. observations

    In this paper, we consider the online regularized pairwise learning (ORPL) algorithm with least squares loss function for non-independently and identically distribution (non-i.i.d.) observations. We first establish new Bennett’s inequalities for α-mixing sequence, geometrically β-mixing sequence, V-geometrically ergodic Markov chain and uniformly ergodic Markov chain. Then we establish the convergence rates for the last iterate of the ORPL algorithm with the polynomially decaying step sizes and varying regularization parameters for non-i.i.d. observations. These established results in this paper extend the previously known results of ORPL from i.i.d. observations to the case of non-i.i.d. observations, and the established result of ORPL for α-mixing can be nearly optimal rate of ORPL for i.i.d. observations with L2-norm.

  • articleNo Access

    Generalization bounds of incremental SVM

    Incremental learning is one of the effective methods of learning from the accumulated training samples and the large-scale dataset. The main advantages of incremental learning consist of making full use of historical information, reducing the training scale greatly and saving space and time consumption. Despite extensive research on incremental support vector machine (SVM) learning algorithms, most of them are based on independent and identically distributed samples (i.i.d.). Not only that, there has been no theoretical analysis of incremental SVM learning algorithms. In this paper, we mainly study the generalization bounds of this incremental SVM learning algorithm whose samples are based on uniformly geometric Markov chains, and exponentially strongly mixing sequence. As a special case, we also obtain the generalization bounds of i.i.d. samples.