World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TRANSIENT RESPONSE ANALYSIS OF THE EUKARYOTIC CHEMOSENSORY SYSTEM TO INTRA-CELLULAR FLUCTUATIONS

    https://doi.org/10.1142/S0219720009003960Cited by:0 (Source: Crossref)

    Like prokaryotic cells, those of eukaryotes are also subjected to noise from within the cells. While the cells have a built-in mechanism to attenuate the noise, conditions may arise where this is beyond the cell's ability to regulate. Start-up perturbations and those induced by metabolic shifts are examples of such situations. Then, it becomes useful to understand how the cells respond. For a eukaryotic chemosensory system, this has been studied by applying response coefficient analysis to a recent model. With even three dependent variables — an activator, an inhibitor, and a response element — the response coefficients differ widely with time and from one variable to another. These differences are interpreted in terms of the chemosensory mechanism and its robustness. The results complement similar recent studies of Escherichia coli chemotaxis, thus supporting their credibility and versatility.