World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Selected Papers from MCCMB2013; Guest Editor: Mikhail Gelfand – Research PapersNo Access

Co-evolution analysis to predict protein–protein interactions within influenza virus envelope

    https://doi.org/10.1142/S021972001441008XCited by:12 (Source: Crossref)

    Interactions between integral membrane proteins hemagglutinin (HA), neuraminidase (NA), M2 and membrane-associated matrix protein M1 of influenza A virus are thought to be crucial for assembly of functionally competent virions. We hypothesized that the amino acid residues located at the interface of two different proteins are under physical constraints and thus probably co-evolve. To predict co-evolving residue pairs, the EvFold (http://evfold.org) program searching the (nontransitive) Direct Information scores was applied for large samplings of amino acid sequences from Influenza Research Database (http://www.fludb.org/). Having focused on the HA, NA, and M2 cytoplasmic tails as well as C-terminal domain of M1 (being the less conserved among the protein domains) we captured six pairs of correlated positions. Among them, there were one, two, and three position pairs for HA–M2, HA–M1, and M2–M1 protein pairs, respectively. As expected, no co-varying positions were found for NA–HA, NA–M1, and NA–M2 pairs obviously due to high conservation of the NA cytoplasmic tail. The sum of frequencies calculated for two major amino acid patterns observed in pairs of correlated positions was up to 0.99 meaning their high to extreme evolutionary sustainability. Based on the predictions a hypothetical model of pair-wise protein interactions within the viral envelope was proposed.