World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DISTANCE-WISE PATHWAY DISCOVERY FROM PROTEIN–PROTEIN INTERACTION NETWORKS WEIGHTED BY SEMANTIC SIMILARITY

    https://doi.org/10.1142/S0219720014500048Cited by:3 (Source: Crossref)

    Reconstruction of signaling pathways is crucial for understanding cellular mechanisms. A pathway is represented as a path of a signaling cascade involving a series of proteins to perform a particular function. Since a protein pair involved in signaling and response have a strong interaction, putative pathways can be detected from protein–protein interaction (PPI) networks. However, predicting directed pathways from the undirected genome-wide PPI networks has been challenging. We present a novel computational algorithm to efficiently predict signaling pathways from PPI networks given a starting protein and an ending protein. Our approach integrates topological analysis of PPI networks and semantic analysis of PPIs using Gene Ontology data. An advanced semantic similarity measure is used for weighting each interacting protein pair. Our distance-wise algorithm iteratively selects an adjacent protein from a PPI network to build a pathway based on a distance condition. On each iteration, the strength of a hypothetical path passing through a candidate edge is estimated by a local heuristic. We evaluate the performance by comparing the resultant paths to known signaling pathways on yeast. The results show that our approach has higher accuracy and efficiency than previous methods.