Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Selected Papers from the 10th International Conference on Computational Systems-Biology and Bioinformatics (CSBio 2019); Guest Editors: De Maria Elisabetta and Morgan MagninNo Access

Cell cycle period control through modulation of clock inputs

    https://doi.org/10.1142/S0219720020400065Cited by:3 (Source: Crossref)

    In this work, we study period control of the mammalian cell cycle via coupling with the cellular clock. For this, we make use of the oscillators’ synchronization dynamics and investigate methods of slowing down the cell cycle with the use of clock inputs. Clock control of the cell cycle is well established via identified molecular mechanisms, such as the CLOCK:BMAL1-mediated induction of the wee1 gene, resulting in the WEE1 kinase that represses the active form of mitosis promoting factor (MPF), the essential cell cycle component. To investigate the coupling dynamics of these systems, we use previously developed models of the clock and cell cycle oscillators and center our studies on unidirectional clock cell cycle coupling. Moreover, we propose an hypothesis of a Growth Factor (GF)-responsive clock, involving a pathway of the non-essential cell cycle complex cyclin D/CDK4. We observe a variety of rational ratios of clock to cell cycle period, such as: 1:1, 3:2, 4:3, and 5:4. Finally, our protocols of period control are successful in effectively slowing down the cell cycle by the use of clock modulating inputs, some of which correspond to existing drugs.