World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PERFECT TELEPORTATION OF UNKNOWN QUDIT BY A d-LEVEL GHZ CHANNEL

    https://doi.org/10.1142/S0219749909005419Cited by:4 (Source: Crossref)

    In the past decades, various schemes of teleportation of quantum states through different types of quantum channels (a prior shared entangled state between the sender and the receiver), e.g. EPR pairs, generalized Bell states, qubit GHZ states, standard W states and its variations, genuine multiqubit entanglement states, etc., have been developed. Recently, three-qutrit quantum states and two-qudit quantum states have also been considered as quantum channels for teleportation. In this paper, we investigate the teleportation of an unknown qudit using a d level GHZ state, i.e. a three-qudit maximally entangled state, as quantum channel. We design a general scheme of faithful teleportation of an unknown qudit using a d-level GHZ state shared between the sender and the receiver, or among the sender, the receiver and the controller; an unknown two-qudit of Schmidt form using a d level GHZ state shared between the sender and the receiver; as well as an unknown arbitrary two-qudit using two shared d level GHZ states between the sender, the receiver and the controller, or using one shared d level GHZ state and one shared generalized Bell state. We obtain the general formulas of Alice's measurement basis, Charlie's measurement basis and Bob's unitary operations to recover the input state of Alice. It is intuitionistic to generalize the protocols of teleporting an arbitrary two-qudit state to teleporting an arbitrary n-qudit state.

    Supported by National Natural Science Foundation of China (Grant No. 60768001 and No. 10464002).