World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Realization of a new permutative gate library using controlled-kth-root-of-NOT quantum gates for exact minimization of quantum circuits

    https://doi.org/10.1142/S0219749914500348Cited by:1 (Source: Crossref)

    Since non-permutative quantum gates have more complex rules than permutative quantum gates, it is very hard to synthesize quantum logic circuits using non-permutative quantum gates, such as controlled-square-root-of-NOT gates (CV∕CV+ gates). In the efficient synthesis algorithm, direct use of quantum non-permutative gates should be avoided. Rather, the key method is to use quantum gates to create new permutative quantum gates that then replace non-permutative quantum gates. This method assumes the library of quantum gate primitives are constructed so as to have the lowest possible quantum cost. In this paper, we first propose some new CV∕CV+-like gates, i.e. controlled-kth-root-of-NOT gates where k = 2,4,8,…, and give all corresponding matrixes. Further, we also present a novel generic method to quickly and directly construct this new optimal quantum logic gate library using CNOT and these non-permutative quantum gates. Our method introduces new means to find permutative quantum gates with lower quantum cost.