Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dynamics of tripartite quantum correlations in mixed classical environments: The joint effects of the random telegraph and static noises

    https://doi.org/10.1142/S0219749917500381Cited by:20 (Source: Crossref)

    In the present paper, the joint effects of two kinds of classical environmental noises, without direct interaction among each other, on the dynamics of quantum correlations (QCs) of a three-qubit system coupled in independent environments is investigated. More precisely, we join the random telegraph noise (RTN) and the static noise (SN) and focus on the dynamics of entanglement and quantum discord (QD) when the qubits are initially prepared in the GHZ- and W-type states. The overall noise affecting the qubits is obtained by combining the RTN and SN in two different setups. The results show that the disorder of the environmental noise as well as its memory qualities and the purity of the initial state considered play a crucial role in the time evolution of the system in such a way that the dynamics of QCs can be controlled by varying them. In fact, we show that, depending on the initial state and noise regime considered, the rate of collapse of QCs may either decrease or increase with the increase of the degree of disorder of the SN, the switching rate of the RTN and the purity of the initial state.