World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The temperature dependence on the coherence time of a quantum pseudodot qubit

    https://doi.org/10.1142/S021974992350003XCited by:0 (Source: Crossref)

    In this work, the energies and eigenfunctions of ground state and first-excited states (GFES) of a strongly coupled polaron in a quantum pseudo-dot (QPD) were studied by using variational method of Pekar type (VMPT). A single qubit can be realized in this two-level quantum system. Then, we calculated the coherence time of a QPD qubit by employing the Fermi Golden Rule. The temperature effects on the coherence time are taken into account by using the quantum statistics theory (QST) and self-consistent calculation method. According to the obtained results, it is found that the coherence time increases with decreasing temperature. Also, this time is a decaying function of the chemical potential of the two-dimensional electron gas and the zero point of the PHP.

    PACS: 71.38.−k, 73.21.la, 63.20.kd