World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SPEECH EMOTION RECOGNITION METHOD BASED ON IMPROVED DECISION TREE AND LAYERED FEATURE SELECTION

    https://doi.org/10.1142/S0219843610002088Cited by:15 (Source: Crossref)

    In this paper, in order to improve the classification accuracy with features as few as possible, a new hierarchical recognition method based on an improved SVM decision tree and the layered feature selection method combining neural network with genetic algorithm are proposed. The improved SVM decision tree is constructed according to confusion degrees between two emotions or those between two emotion groups. The classifier in each node of the improved decision tree is a SVM. On the emotional speech corpus recorded by our workgroup including 7 emotions, with the features and parameters gotten by the method combining neural network with genetic algorithm, improved SVM decision tree, multi-SVM, SVM-based binary decision tree, the traditional SVM-based decision directed acyclic graph and HMM are evaluated respectively. The experiments reveal that, compared with the other four methods, the proposed method in this paper appears better classification accuracy with fewer features and less time.