World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CONTROL OF A COMPLIANT HUMANOID ROBOT IN DOUBLE SUPPORT PHASE: A GEOMETRIC APPROACH

    https://doi.org/10.1142/S0219843612500041Cited by:3 (Source: Crossref)

    Enhancing energy efficiency of bipedal walking is an important research problem that has been approached by design of recently developed compliant bipedal robots such as CoMan. While compliance leads to energy efficiency, it also complicates the walking control system due to further under-actuated degrees of freedom (DoF) associated with the compliant actuators. This problem becomes more challenging as the constrained motion of the robot in double support is considered. In this paper this problem is approached from a multi-variable geometric control aspect to systematically account for the compliant actuators dynamics and constrained motion of the robot in double support phase using a detailed electro-mechanical model of CoMan. It is shown that the formulation of constraint subspace is non-trivial in the case of non-rigid robots. A step-wise numerical algorithm is provided and the effectiveness of the proposed method is illustrated via simulation, using a ten DoF model of CoMan.