Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Subject-Specific EMG-Driven Musculoskeletal Model for Applications in Lower-Limb Rehabilitation Robotics

    https://doi.org/10.1142/S0219843616500055Cited by:32 (Source: Crossref)

    Robotic devices have great potential in physical therapy owing to their repeatability, reliability and cost economy. However, there are great challenges to realize active control strategy, since the operator’s motion intention is uneasy to be recognized by robotics online. The purpose of this paper is to propose a subject-specific electromyography (EMG)-driven musculoskeletal model to estimate subject’s joint torque in real time, which can be used to detect his/her motion intention by forward dynamics, and then to explore its potential applications in rehabilitation robotics control. The musculoskeletal model uses muscle activation dynamics to extract muscle activation from raw EMG signals, a Hill-type muscle-tendon model to calculate muscle contraction force, and a proposed subject-specific musculoskeletal geometry model to calculate muscular moment arm. The parameters of muscle activation dynamics and muscle-tendon model are identified by off-line optimization methods in order to minimize the differences between the estimated muscular torques and the reference torques. Validation experiments were conducted on six healthy subjects to evaluate the proposed model. Experimental results demonstrated the model’s ability to predict knee joint torque with the coefficient of determination (R2) value of 0.934±0.013 and the normalized root-mean-square error (RMSE) of 11.58%±1.44%.