World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Automatic Carotid Artery Detection Using Attention Layer Region-Based Convolution Neural Network

    https://doi.org/10.1142/S0219843619500154Cited by:4 (Source: Crossref)
    This article is part of the issue:

    Localization of vessel Region of Interest (ROI) from medical images provides an interactive approach that can assist doctors in evaluating carotid artery diseases. Accurate vessel detection is a prerequisite for the following procedures, like wall segmentation, plaque identification and 3D reconstruction. Deep learning models such as CNN have been widely used in medical image processing, and achieve state-of-the-art performance. Faster R-CNN is one of the most representative and successful methods for object detection. Using outputs of feature maps in different layers has been proved to be a useful way to improve the detection performance, however, the common method is to ensemble outputs of different layers directly, and the special characteristic and different importance of each layer haven’t been considered. In this work, we introduce a new network named Attention Layer R-CNN(AL R-CNN) and use it for automatic carotid artery detection, in which we integrate a new module named Attention Layer Part (ALP) into a basic Faster R-CNN system for better assembling feature maps of different layers. Experimental results on carotid dataset show that our method surpasses other state-of-the-art object detection systems.