A SIMPLIFIED MESHLESS METHODS FOR BRITTLE FRACTURE OF CONCRETE
Abstract
A simplified meshless methods for brittle fracture and nonlinear material is presented. In this method, the crack is modeled by a set of discrete crack segments crossing the entire domain of influence of the meshless shape functions. The key advantage of this method is its simplicity since no representation of the crack topology is needed. A nonlocal stress tensor around the crack tip is used as fracture criterion. A neo-Hooke material in the bulk material is used and a cohesive zone model is employed once discrete cracks occur. We also present consistent linearization of the cohesive zone model. The method is applied to fracture modeling in concrete that is accompanied by excessive cracking and therefore methods that represent the crack path have major drawbacks. We demonstrate the accuracy of the proposed method for complex problems involving mode-I and mixed mode failure.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in finite element methods! |