SIMULATION OF NORMAL PERFORATION OF ALUMINUM PLATES USING AXISYMMETRIC SMOOTHED PARTICLE HYDRODYNAMICS WITH CONTACT ALGORITHM
Abstract
An axisymmetric smoothed particle hydrodynamics (ASPH) with contact algorithm is presented to simulate the normal perforation of aluminum plates. Traditional ASPH considering contact implicitly by conservation equations has the problem of virtual tensile stresses and shear stresses for perforation simulation. To overcome the problem, a particle-to-particle contact algorithm is employed to treat contact interfaces explicitly in the present method. An artificial stress method is extended for the method to remove tensile instability. The present method is firstly validated by three test cases. Then, it is used to simulate the normal perforation of aluminum plates with ogive-nose steel projectiles. Numerical simulation results show that the method predicted residual velocities of projectiles in good agreement with the experimental data.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in finite element methods! |