World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Smoothed Particle Hydrodynamics with Stress Points and Centroid Voronoi Tessellation (CVT) Topology Optimization

    https://doi.org/10.1142/S0219876216500316Cited by:10 (Source: Crossref)

    Various formulations of smoothed particle hydrodynamics (SPH) have been presented by scientists to overcome inherent numerical difficulties including instabilities and inconsistencies. Low approximation accuracy could cause a result of particle inconsistency in SPH and other meshfree methods. In this study, centroid Voronoi tessellation (CVT) topology optimization is used for rearrangement of particles so that the inconsistency due to irregular particle arrangement can be corrected. Using CVT topology optimization method, the SPH particles, which are generated randomly inside a predetermined domain, are moved to the centroids, i.e., the center of mass of the corresponding Voronoi cells based on Lloyd’s algorithm. The volume associated with each particle is determined by its Voronoi cell. On the other hand, it has been shown that particle methods with stress point integration are more stable than the ones using nodal integration. Conventional SPH approximations only use SPH particles, and it results in the so-called tensile instability. In this paper, a new approach of using stress points is introduced to assist SPH approximations and stabilize the SPH methods.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!