World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Numerical Simulation of Water Entry with Improved SPH Method

    https://doi.org/10.1142/S0219876218460040Cited by:16 (Source: Crossref)
    This article is part of the issue:

    Water entry problems are very common in engineering and sciences. When objects move with relatively high speed, bubble cavities will be generated, and the behavior of moving objects will also be affected conversely. In this paper, the water entry problems are studied using smoothed particle hydrodynamics (SPH) method, which has special advantages in modeling free surfaces, moving interfaces. First, an improved fluid–solid interface treatment algorithm is presented, whose effectiveness is validated by a water entry of a buoyant cylinder. Then the water entry with different velocities and directions are researched. It is found that the velocities and angles of the moving objects will affect the movement of the object greatly, and the SPH model can give optimal predication of these corresponding conditions.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!