World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Smoothed Particle Hydrodynamics Simulations of Whole Blood in Three-Dimensional Shear Flow

    https://doi.org/10.1142/S0219876220500097Cited by:4 (Source: Crossref)

    Numerical modeling of whole blood still faces great challenges although significant progress has been achieved in recent decades, because of the large differences of physical and geometric properties among blood components, including red blood cells (RBCs), platelets (PLTs) and white blood cells (WBCs). In this work, we develop a three-dimensional (3D) smoothed particle hydrodynamics (SPH) model to study the whole blood in shear flow. The immersed boundary method (IBM) is used to deal with the interaction between the fluid and cells, which provides a possibility to model the RBCs, PLTs and WBCs simultaneously. The deformation of a small capsule, comparable to a PLT in size, is first examined to show the feasibility of SPH model for the PLTs’ behaviors. The motion of a single RBC in shear flow is then studied, and three typical modes, tank-treading, swinging and tumbling motions, are reproduced, which further confirm the reliability of the SPH model. After that, a simulation of the whole blood in shear flow is carried out, in which the margination trend is observed for both PLTs and WBC. This shows the capability of SPH model with IBM for the simulation of whole blood.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!