World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CONFORMAL COURANT ALGEBROIDS AND ORIENTIFOLD T-DUALITY

    https://doi.org/10.1142/S0219887812500843Cited by:10 (Source: Crossref)

    We introduce conformal Courant algebroids, a mild generalization of Courant algebroids in which only a conformal structure rather than a bilinear form is assumed. We introduce exact conformal Courant algebroids and show they are classified by pairs (L, H) with L a flat line bundle and H ∈ H3(M, L) a degree 3 class with coefficients in L. As a special case gerbes for the crossed module (U(1) → ℤ2) can be used to twist TM ⊕ T*M into a conformal Courant algebroid. In the exact case there is a twisted cohomology which is 4-periodic if L2 = 1. The structure of Conformal Courant algebroids on circle bundles leads us to construct a T-duality for orientifolds with free involution. This incarnation of T-duality yields an isomorphism of 4-periodic twisted cohomology. We conjecture that the isomorphism extends to an isomorphism in twisted KR-theory and give some calculations to support this claim.

    AMSC: 53D18, 53C08, 81T30, 19L50