World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS

    https://doi.org/10.1142/S0219891610002062Cited by:41 (Source: Crossref)

    We consider a class of doubly nonlinear degenerate hyperbolic-parabolic equations with homogeneous Dirichlet boundary conditions, for which we first establish the existence and uniqueness of entropy solutions. We then turn to the construction and analysis of discrete duality finite volume schemes (in the spirit of Domelevo and Omnès [43]) for these problems in two and three spatial dimensions. We derive a series of discrete duality formulas and entropy dissipation inequalities for the schemes. We establish the existence of solutions to the discrete problems, and prove that sequences of approximate solutions generated by the discrete duality finite volume schemes converge strongly to the entropy solution of the continuous problem. The proof revolves around basic a priori estimates, the discrete duality features, Minty–Browder type arguments, and "hyperbolic" L weak-⋆ compactness arguments (i.e. propagation of compactness along the lines of Tartar, DiPerna, …). Our results cover the case of non-Lipschitz nonlinearities.

    AMSC: Primary 35K65, Primary 35L65, Primary 74S10, Secondary 65M12, Secondary 35A02, Secondary 35A01