World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NANOMECHANICAL MAPPING OF CARBON BLACK REINFORCED NATURAL RUBBER BY ATOMIC FORCE MICROSCOPY

    Cited by:1 (Source: Crossref)

    Atomic force microscopy (AFM) has the advantage of obtaining mechanical properties as well as topographic information at the same time. By analyzing force-distance curves measured over two-dimensional area using Hertzian contact mechanics, Young's modulus mapping was obtained with nanometer-scale resolution. Furthermore, the sample deformation by the force exerted was also estimated from the force-distance curve analyses. We could thus reconstruct a real topographic image by incorporating apparent topographic image with deformation image. We applied this method to carbon black reinforced natural rubber to obtain Young's modulus distribution image together with reconstructed real topographic image. Then we were able to recognize three regions; rubber matrix, carbon black (or bound rubber) and intermediate regions. Though the existence of these regions had been investigated by pulsed nuclear magnetic resonance, this paper would be the first to report on the quantitative evaluation of the interfacial region in real space.

    Invited lecture presented at the International Symposium on Polymer Physics, 2006, Suzhou, China.