Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Atomic force microscopy (AFM) has the advantage of obtaining mechanical properties as well as topographic information at the same time. By analyzing force-distance curves measured over two-dimensional area using Hertzian contact mechanics, Young's modulus mapping was obtained with nanometer-scale resolution. Furthermore, the sample deformation by the force exerted was also estimated from the force-distance curve analyses. We could thus reconstruct a real topographic image by incorporating apparent topographic image with deformation image. We applied this method to carbon black reinforced natural rubber to obtain Young's modulus distribution image together with reconstructed real topographic image. Then we were able to recognize three regions; rubber matrix, carbon black (or bound rubber) and intermediate regions. Though the existence of these regions had been investigated by pulsed nuclear magnetic resonance, this paper would be the first to report on the quantitative evaluation of the interfacial region in real space.
Nano-mechanical mapping by atomic force microscopy has been developed as an useful application to measure mechanical properties of soft materials at nanometer scale. To date, the Hertzian theory was used for analyzing force-distance curves as the simplest model among several contact mechanics between elastic bodies. However, the preexisting methods based on this theory do not consider the adhesive interaction in principle, which cannot be neglected in the ambient condition. A new analytical method was introduced to estimate the elasticity and the adhesive energy simultaneously by means of the JKR theory, describing adhesive contact between elastic materials. Poly(dimethylsiloxane) (PDMS) and isobutylene-co-isoprene rubber (IIR) were analyzed to verify the applicable limit of the JKR analysis. For elastic samples such as PDMS, the force-deformation plots obtained experimentally were consistent with JKR theoretical curves. Meanwhile, for viscoelastic samples, especially for IIR, the experimental plots revealed large deviations from JKR curves depending on scanning velocity and maximum loading force. Some nano-rheological arguments were employed based on the difference between these specimens.